Rank 2 local systems and abelian varieties II

نویسندگان

چکیده

Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. $\mathcal {E}$ semi-simple overconvergent $F$ -isocrystal on $X$ . Suppose that irreducible summands {E}_i$ of have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$ , and infinite monodromy at $\infty$ further for each closed point $x$ the characteristic polynomial is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$ Then there exists dense open subset $U\subset X$ such {E}|_U$ comes from family abelian varieties $U$ As an application, let $L_1$ lisse {Q}}_l$ sheaf has {Q}}_l(-1)$ all crystalline companions to exist (as predicted by Deligne's conjecture) if only scheme $\pi _U\colon A_U\rightarrow U$ $L_1|_U$ summand $R^{1}(\pi _U)_*\bar

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank One Eisenstein Cohomology of Local Systems on the Moduli Space of Abelian Varieties

We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.

متن کامل

Indices of Rank and of Singularity on Abelian Varieties.

I G. W. Ford and G. E. Uhlenbeck, "Combinatorial Problems in the Theory of Graphs. I," these PROCEEDINGS, 42, 122, 1956; G. W. Ford, B. Z. Norman, and G, E. Uhlenbeck, "Combinatorial Problems in the Theory of Graphs. II," these PROCEEDINGS, 42, 203, 1956; G. W. Ford and G. E. Uhlenbeck, "Combinatorial Problems in the Theory of Graphs. III," these PROCEEDINGS, 42, 529, 1956. We shall refer to th...

متن کامل

2 Periods of Abelian Varieties

We prove various characterizations of the period torsor of abelian varieties, and we correct some errors in the literature. A shortened version of this paper will be submitted for publication.

متن کامل

0 Abelian Varieties into 2 g + 1 - dim . Linear Systems

We show that polarisations of type (1, ..., 1, 2g + 2) on g-dimensional abelian varieties are never very ample, if g ≥ 3. This disproves a conjecture of Debarre, Hulek and Spandaw. We also give a criterion for non-embeddings of abelian varieties into 2g + 1-dimensional linear systems.

متن کامل

On the Rank of Abelian Varieties over Function Fields

Let C be a smooth projective curve defined over a number field k, A/k(C) an abelian variety and (τ, B) the k(C)/k-trace of A. We estimate how the rank of A(k(C))/τB(k) varies when we take a finite Galois k-cover π : C → C defined over k.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2022

ISSN: ['0010-437X', '1570-5846']

DOI: https://doi.org/10.1112/s0010437x22007333